
The Build
Most recently, we’ve been working on a prototype robot, that
successfully scans for, and drives to tennis balls.

New Software - Calibration and HSV masking
To reduce dependence on our trained model during runtime, we
implemented a solution using HSV (Hue, Saturation, Value) color space,
which is highly resilient to lighting variations. By leveraging this, we
achieved accurate ball detection with the need for calibration on each
use. We developed a laptop-based terminal interface to remotely
connect to the robot via its hosted network. Through this interface,
users can initiate the calibration mode, which utilizes our object
detection model to locate the tennis ball and separate it from the
background. By analyzing the color values of the ball, we determine
the upper and lower thresholds for its color, considering multiple
calibration iterations to account for lighting and environmental

Project Overview
AI/ML Tennis Ball Retrieval Robot
Introduction
Founded last year in 2022, we are the second group of students involved in Queen Elizabeth’s student-led robotics and engineering society. Our
main project for this year involves using computer vision to recognise, drive to and pick up tennis balls on a court. This will combine a significant
amount of software with robot hardware. Our focus is investigating the use of AI/ML enabled robots in areas where humans are inefficient.

Jacob, Owen, Daniyal & Sean

Camera Module
We are using the Raspberry Pi Camera
V2.1 module to capture video to send
to the Raspberry Pi. This is then
downscaled to a suitable resolution
for efficient processing, alongside
accuracy.

The Raspberry Pi
This is the brain of our robot: the Raspberry Pi Model 4B. It
processes the capture from the camera using our trained
image detection models, HSV colour calibration and colour
masks. This provides an accurate way to search for tennis balls
while not being to intensive on the processor. Depending on
what it interprets, it sends out signals to multiple motor control
boards.

Controlling Movement - Motors and Motor Boards
The project uses L298N motor drivers, each of which control two 3-6V DC motors. The motor driver board takes
signals outputted by the Raspberry Pi and moves the respective motor. These boards and motors are powered
by rechargeable batteries, for easy maintenance and to be more environmentally friendly.

The Software
We have made a few different iterations of our software. We begun by developing an algorithm based on computer vision and machine
learning, which was trained on positive data of annotated tennis ball images. We also used negative training data with no tennis balls or with
items that closely resemble them. This allows the model to have a better understanding of what is and what isn’t a tennis ball. Once we
attempted to transfer this program to the Raspberry Pi, the limitations of its hardware lead to a noticeable delay in the output of the program.

Initial Software - Computer Vision and ML
As mentioned, our computer vision model didn’t run very well on the
hardware of the Raspberry Pi.

Above you can see the output of the software running on a laptop
compared to the RPi There is a large delay, and this is due to the
processing. This would cause the Pi to execute incorrect movements,
often just infinitely spinning. Therefore, we needed a new approach.

Want to learn more?
robo-quest.com

quest.molecular.page
jacob@robo-quest.com

Hardware Causing Lag (ball moving left)

Believed position of the ball (RPi)

Coordinating movement
Using our mask, we look for large clusters of white pixels - we can
assume that these are tennis balls. The larger the clump (closer to the
bot), the more pixels, so the higher the confidence. As we are more
confident that larger clumps are tennis balls, we should move to pick
them up first.

We use image moments to do so and also get the center coordinate of
the clump. We define two lines on the screen, one vertical in the center
for left and right movement, as well as one horizontal towards the
bottom of the screen for movement forwards and backwards. We can
check what side of the lines the center is on, allowing accurate
movement. We also check how far the center is from the lines, and the
further away it is, the greater the speed of the motors.

The Hardware

Actual position of the ball

conditions. The averaged calibration
results are then applied as a mask to the
camera input, representing the tennis ball
as white and the background as black. By
identifying the largest area of white pixels,
we place a colored dot at the center of this
region in the video feed. The dot's position
relative to the robot serves as the basis for
determining the ball's location, triggering
movement commands accordingly.

The prototype robot turning and moving towards a tennis ball
We adapted our software to run headlessly, meaning that no display is
required for it to run and still function correctly. As the robot is now
able to move, we adapted the calibration mode slightly. Previously,
the user would have to move the bot and tennis ball to account for
different lighting conditions. However, the bot can now move itself
around to calibrate using different angles of the ball as well as
surveying the lighting conditions of the environment.

This solution works well in outdoor and indoor environments, with
level ground - which is perfect for tennis courts.

L066

