
The superior performance of the LSTM-based RNN model highlights the potential of advanced 

machine learning techniques in high-energy particle physics. Its ability to recognise patterns in 

temporal data suggests RNNs are particularly useful in situations where traditional methods may 

struggle or prove tedious due to the complexity of event sequences.

As a team we set our own personal goal at the start of this project – to build a foundation for us to 

apply our passion for the ever-evolving world of machine learning to the vast complexities of particle 

physics. Though our rigorous research and meticulous planning, time managing and organisation we 

feel we have achieved so much more than that and have opened our eyes to this ever-evolving field 

of particle discovery.

Big Data: Atlas
-Applications of Recurrent Neural Networks 
in detecting the Higgs Boson and other 
exotic particles

Using Recurrent Neural Networks (RNNs) to classify Higgs boson events involves a series of steps 
from data preparation to model training and evaluation. Our classification process involves 
detecting the subtle decay signatures of the  particle we are looking for. For the Higgs boson, we 
can look at patterns such as decays into photons, W and Z bosons, or fermion pairs, amidst 
significant background noise.
Our actual data consists of a Training set of 250000 events, with an ID column, 30 feature 
columns, a weight column and a label column and a test set of 550000 events with an ID column 
and 30 feature columns. It contains a mixture of simulated signal and background events, built 
from simulated events provided by the ATLAS collaboration at CERN.

There are a couple steps in developing this:
• We first preprocess our data by normalizing all particle features (invariant mass, energy etc.)
• Then employ K-Fold cross-validation

o This manipulates the way we use the training data to ensure robustness and avoid 
overfitting (when the model begins to model the training data excessively closely, 
instead of modelling the trends).

• Compile the model, including defining the necessary callbacks for the training process
• Train the model - this took us a very long time

Our model architecture consists of an input layer to accept sequential data, 2 LSTM layers to 
process sequential information, dense layers to combine learned features, dropout layers which 
help avoid overfitting again, and finally the output layer which uses a ReLU function to produce a 
classification output.

A Recurrent Neural Network (RNN) is a type of neural network particularly suited for 
processing sequential data, as it retains an internal state that captures information about 
previous inputs in the sequence. We can use RNNs in particle physics to analyse sequences of 
measurements of properties such as energy and momentum. The RNN will learn temporal 
patterns within these sequences, thus allowing it to recognise indicators of individual particle 
events

Conducting a non-resonant searchHiggs Boson: The Mass-Giving Particle

The Higgs Boson is a fundamental particle in the 
Standard Model and is crucial for explaining how other 
particles acquire mass. It gives rise to the Higgs field, 
which is essential for the formation of stable matter as 
its interactions with particles is what allows them to gain 
mass. It was first discovered in 2012 at the Large Hadron 
Collider (LHC) at CERN, a 27-kilometer ring built to 
accelerate protons and heavy ions to near-light speeds 
to collect data on their collisions. It is thanks to the 
silicon trackers, calorimeters and muon spectrometers in 
the ATLAS detector that we can detect the products of 
these collisions, specifically the decay products of 
unstable particles such as the Higgs Boson.
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The Higgs Boson is almost impossible to spot directly, it simply decays too fast for us to 
detect. However, we can identify and measure its decay products and work backwards to 
piece together the particle that decayed in the first place. By looking for the right products 
with the right attributes, we can spot where a Higgs Boson probably decayed, thus 'finding 
the Higgs Boson'. Below is an example of a possible decay:

We opted to search for the Higgs Boson via the H→ WW channel (shown above).
However, similar to the Higgs itself, W bosons decay too fast to show up in the ATLAS 
detector. We instead infer that they were there by detecting the Secondary Decay Products: a 
'good quality lepton'(l) and a neutrino(ν). The neutrino is not detected directly, rather it too is 
inferred from 'missing energy'

We then find our 'good quality' lepton by imposing a set of criteria over the 600,000+ 
dilepton entries in order to narrow them down. This criteria is imposed by making a series of 
'cuts' on our data. After this selection process, we are left with a set of secondary decay 
products that could have been from a Higgs Boson Decay.

However, the next layer of complexity is introduced when we consider that not every set 
of lν l'ν' decay products is from a Higgs Boson decay, they could have been from a quark-
quark decay for example.

Fig 2.1 - Higgs to 2 W-Bosons channel Feynman diagram [3]
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A non-resonant search involves looking for signals that do not produce distinct peaks or 
resonances in the invariant mass distribution. It is in situations like this when the decay products 
have greater invariant mass than the original particle that we must take this approach over a 
resonant method such as a bump-hunt.

This approach has three main steps:
• Histogram the transverse mass of the decay products for real data
• Histogram the transverse mass of MC simulations of the background
• Subtract the backgrounds from the data

Among the most significant background events is the non-resonant
WW diboson production stemming from 2 quarks, which we included
as part of our analysis. Further background events include 𝜏𝜏,
single-top-quark, and W+ jet events.

Plotting our data and then subtracting the MC data from 
the real data yields the following graphs. The final
Histogram leaves signals remaining outside of
Background events – the Higgs signal!

Fig 3.0 - WW-diboson background 
production from two quarks [5]

Fig 2.2 - Higgs -> W Bosons -> Lepton and Neutrino [4]

Magnetic monopoles are hypothetical elementary particles that possess a single magnetic charge. The 
existence of a magnetic monopole in the universe would explain why electric charge is quantized. 
Various theories predicted them to arise naturally but haven't been observed experimentally and their 
discovery would have profound implications for our understanding of fundamental physics (unification 
of forces and the structure of space-time). 

Fig 3.1 - Histogram of transverse mass of real 
data (blue) and MC simulations (orange)

Conclusion

Fig 3.2 - Histogram of transverse mass of real data 
with simulated background events subtracted

By statistically analysing the dataset, we can detect specific particles. However, no model 
provides absolute certainty, and some models offer more reliable insights than others.

This brings us to our project aims:
• To prove the existence of the Higgs boson through 2 separate methods:

o By performing a non-resonant search where we filter out background events using 
Monte-Carlo simulations

o By developing a Recurrent Neural Network model to detect Higgs Boson events 
with high accuracy

• Compare the accuracy and effectiveness of the two models in processing the complex, 
sequential data generated by particle detectors

• Explore how the superior model can be used to support the existence of theorised 
particles

Through this, we hope to gain a deeper understanding of the statistical techniques that go 
into particle classification and how machine learning can be used to accelerate the detection 
of particles, as well as provide supporting evidence for hypothesised exotic particles.

Fig 3.3 - Histogram of transverse masses, taking into account more background events [6]

A more reliable signal can be obtained by accounting for 
more background events. The following histogram 
accounts for less frequent events and groups them, 
allowing us to observe a small excess in data, and which 
corresponds to the production of the SM Higgs boson.

Magnetic monopoles are expected to leave distinct 
signatures in particle detectors(unique ionization patterns 
and long, straight tracks)- making them perfect for 
Recurrent Neural Network classification. So, we set out to 
evaluate the application of RNN's in the detection of 
elusive particles like magnetic monopoles. In our research, 
we utilized an RNN model to distinguish between synthetic 
monopole events and background noise.

The exact decay channels of magnetic monopoles remain hypothetical- this makes it inaccurate to 
identify specific signals/signatures in experimental data like ATLAS, we instead simulated our own data. 
By generating realistic synthetic data with a Monte Carlo simulation, noise and overlapping features, we 
simulated monopole events (with a mass of 100 GeV, charge of 68.5, an average track length of 1000 
units, and an average ionization of 100 units, while background events had a mass of 50 GeV, an average 
track length of 800 units, and an average ionization of 80 units) and trained our model.

The model achieved an impressive accuracy 
of 90% on test data, with precision and recall 
both exceeding 90% for both monopole and 
background events. The Area Under the 
Curve (AUC) of the Receiver Operating 
Characteristic (ROC) curve was 
approximately 0.90, indicating  that the RNN 
effectively captured the sequential 
dependencies in the ionization 
measurements, demonstrating high 
accuracy in classifying monopole events.

Fig 6.1 Receiver Operating Characteristic (ROC) Curve

Fig 1.1 - The 
Higgs Field [2]

How an RNN works

An RNN processes inputs in a sequence. At each time step, t, it takes an input,  Xt, and 
combines it with the previous hidden state ht-1, using a recurrent function, A.

Fig 6.1 AI Interpretation of 
hypothesized magnetic 
monopoles
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Fig 4.0 - Structure of an RNN [7]

Though RNNs are a powerful tool for sequential data processing, they suffer from the 
vanishing gradient problem, which limits their ability to retain information long-term. For the 
600,000 events we are working with, memory can become a considerable issue and can 
significantly impact the result. So, we have opted to use a more advanced variation of an RNN 
called an LSTM.

A Long Short-Term Memory network is an advanced type of RNN designed specifically to overcome 
the vanishing gradient problem.
This occurs when the gradients used for updating the RNN's weights become very small, effectively 
stopping the network from further learning. In our case, would mean the RNN would struggle to 
capture long-term dependencies in the sequential collision data.

Fig 1.0 - The ATLAS 
detector opened [1] Time

Fig 4.1 - Decay of information through time in an RNN[8]

We obtained the following results:
Training Accuracy – 98.7%
Validation accuracy - 97.8%
Test Accuracy – 97.5%

As visible from the results, the RNN shows 
exceptional classification ability to separate 
the Higgs Boson from background noise.

To solve this problem, an LSTM uses LSTM units that preserve information over long periods. These 
units are added together in layers of an RNN and are controlled by three gates – input, output and 
forget – which regulate the flow of information in and out of the cell. They ensure important 
information is kept and irrelevant information is discarded, ensuring gradients remain stable 
through training.

An ROC (Receiver Operating Characteristic) 
curve evaluates the performance of a binary 
classification model by plotting the True
Positive Rate (TPR) against the False Positive
Rate (FPR) at various threshold. It visualises
the trade-off between sensitivity (how well the model detects true positives) and specificity (how 
well it avoids false positives). An AUC of 1 suggests perfection, whereas 0.5 suggests random 
guessing, so the closer the curve is to the top-left corner, the better the model's performance. The 
ROC curve generated from the model's predictions also showed excellent performance with 
a higher area under the curve (AUC=0.99).

The more effective model

Fig 5.0 - ROC Curve of our RNN in detecting the Higgs Boson

There are many statistical models and methods that can be used in detecting particles, and they all 
have their own pros and cons depending on the situation - in our case, we are testing 2 models and 
looking for the model that determines the presence of the Higgs Boson most accurately and most 
efficiently.
Non-resonant searches typically include simpler implementation than machine learning algorithms 
and therefore offer a more accessible insight into the world of particle physics. However, their 
accuracy is very much dependant on your identification of background events and accuracy in their 
removal, as shown in fig 3.2 and 3.3. Furthermore, it is simply not possible to predict and simulate 
every background event, meaning there is always a considerable uncertainty attached to the output.
In contrast, an RNN is much more complicated and computationally expensive to apply. However, on 
simulated data it has proved to be highly accurate as it does not need to consider individual 
background events or pre-defined cuts. Instead, it captures complex dependencies and patterns that 
may be indicative of Higgs boson events.

In the search of the Higgs boson, we have found using an RNN to be far superior to the tradition non-
resonant search approach, especially for the H→ WW channel which we specifically tested.
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